
A-Ai2@ 652 ERROR MODELS FOR STABLE HYBRID ADAPTIVE SYSTEMS PART II 1/1
(U) YALE UNIV NEW HAVEN CT CENTER FOR SYSTEMS SCIENCE

NARENDRA ET AL AUG 82 8207-PT-2 N88814-76-C-68i7
UNCLASSIFIED F/G 9/2 NL

mollllllllilIIEEIIIIIIIII
E/l 7rI



ILL2.~'2A I a1Ilt~ t

SMICROCOPY IISOLUlON TEST CHART

MICROCOPY RESOLUTION TEST CHART NATIONAL SUM Of STANDOMCS-1963A
NATIONA UREAU OF STfOARDS-193-A 15

I" VM2 i ,LL, ;
-0______ no 

JL

L I1.2516.64
MICROCOOCOY RESOLUTIO TEST CHART

NATIONAL BUREAU OF STAANROARDS-19-- -3-A

in..'l E .-

IL I

MgCOCOPY~MIROOP RESOLUTION TEST CCRHARTEOII ES 4A

mil oim. E I TIM IOF UrW~ -I9A.A O BUKMR A OUFM o S AN ARDS i9-A,

/

-L-A -1, 
L 2 *u*- .... .



~, ~w w V V V V V

V V -~ S 5 0 S

V *V S S S S S



ERRR 36DgLS FOR STANL

KHRID ADAPTIVE SYSTIE

PART 11

1 Kumpati S.- Earandra, Iraky R. Khalifa
and Anuradha M. Annasvmy

Augut 1982 (

'n~ed forpuO I3
'llstdbltiO



Error Models for Stable Hybrid Adaptive Systems

Kumpati S. Narendra, Iraky H. Khalifa

and Anuradha M. Annaswamy

Center for System Science, Electrical Engineering

Yale University

-.:. The paper presents a unified approach to the design of stable adaptive

algorithms for hybrid, discrete and continuous systems which have two time scales.

Hybrid error models are first analyzed in detail using two distinct approaches

* and the results are extended to discrete systems in which the parameters are

adjusted at rates slower than those at which the systems operate. The algorithms

* developed when applied to the adaptive control problem are shown to result in

,. global stability. Simulation results are included and reveal the dependence of

the convergence rates of the various algorithms on the two tim-scales. < --

Introduction: In the past few years several continuous [1,2] and discrete [3,41

adaptive algorithms have been developed for the stable identification and control

of linear time avariant plants with unknown paramters. In continuous adaptive

systems the plant operates in continuous time and the controller parameters are

adjusted continuously. Similarly, in discrete adaptive system, the various

" signals as well as the control parameter vector are defined at discrete instants

* of tim. However, practical adaptive systems, for a variety of reasons, may not

be either purely discrete or purely continuous. For example, recent advances in

- inicroprocessors and related digital computer technology favor the use of discrete

controls even for continuous systems. Such system are now referred to as hybrid

control systems. Further, even in purely discrete systems, the computational 0

effort Involved quite often necessitates the adjustment of the adaptive control

parameters at rates significantly slower than that at which the system operates.
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Both hybrid as well as discrete adaptive systems of the latttr type can be con-

sidered as system with two time-scales. Recently, continuous algorithms of an

Integral type have been suggested In the literature [5] which can also be inter-

preted as belonging to this class. This paper proposes a unified approach to the

analysis and synthesis of such systems.

Gawthrop [6] was the first to Introduce the concept of hybrid self-tuning

controllers which are partly realized in continuous time and partly in discrete

time. In [7] Elliott presented a method for the indirect control of hybrid adaptive

systems and more recently Cristi and lonopoli [8] attempted the direct hybrid

control of model reference adaptive system. The central question in both cases

is the global stability of the overall system which can be best analyzed by con-

sidering the behavior of the corresponding error model. The msin contribution of

this paper is the detailed analysis of several error models using two distinct

Sapproaches. The insights obtained by this analysis, as well as the specific results

derived provide valuable tools for the synthesis of stable adaptive controllers for

general two time-scale system and for hybrid adaptive systems in particular.

In section 2, using a Lyapunov approach, different adaptive laws are developed

for the various error models which assure the boundedness of the parameter error

vector. Conditions under which the output and parmter error vectors tend to zero

asymptotically, are also derived and are particularly useful in the identification

problem. The main result of this section, which is most relevant to the control

problem, relates the rate of growth of the output error to that of the norm of the

input vector. While this result is common to all the error models, the method

of proof used in each case is found to be significantly different.

Applications, extensions and modifications of the adaptive algorithm are

treated briefly in section 3. The principal steps in the proof of global stability

of a hybrid adaptive control system are first outlined in section 3a. The se

.4
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algorithm when suitably modified are also shown in section 3b to be applicable

to both discrete and continuous systems with two time-scales. Finally, in section

3c it ins shown that the use of time-varying adaptive gain matrices (as in the

well known recursive least-squares approach) in the algorithms does not affect the

stability arguments of the earlier sections.

Section 4 contains detailed simulation results of different error models.

The speed and accuracy of the various algorithms are compared for different values

of the period T during which the control parameters are constant. Approach I is

found to be better for small values of T while approach 2 is significantly better

for larger values. A convex combination of the two schemes, which can also be

demonstrated to be stable, is suggested as a viable alternative for mst adaptive

system.

2. Error Modeis:

The dynamical system discussed in this section are continuous tim systm

in which t c l, the set of all positive real numbers. Let u: JR+ --It and el: Ot -,-I

be piaceise continuous functions referred to as the input and output functions of

the error models respectively. Let (t) be a monotonically Increasing ubouded

sequence inR + with 0 < Tin < T T < for k e V, where Tk is deflned a

Tk i tb " tk" When tk  kT (or Tk a T) we shal can T the samplin period. Let

2+ a*: R *JR be a piecewise constant function, referred to as the paraneter error vector

md assum values

;" k  [ tk  l

where k is a constant vector. The error models described in this section relate

the output error a,, the input vector u and parameter error vector * in terms of

algebraic or differential equations.

-9
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~3> a) Error Nodel 1:

The first error model is described by the equation

T
*ku(t) - eCt) t C [tk,t. Z) (1)

..-" ke n

It Is assumd that 0 (and hence #k) is unknmown, the values u(t) and e,(t) can

2. be observed at every instant t and A ~k  l k can be adjusted at t - tk 4 .

The objective is to determine an adaptive law for choosing the sequence {A&k}

using all available input-output data so that

li. 61 (t) - 0.

Consider the Lyapunov function candidate

Vk) -1/2 *,k k (2)

Then

AVk) & Vc, l) - V(k)
.-,# . ~ [+ T. (3)

Choosing the adaptive la(

• [V: -- . e 1 %(?) u(r)
*l a, "T) d (4)

.k f 1 u (T)u(T)

yields

- AVk) - 21 R ,k (5)

w ,ere ,k Is the symtric positive semi-definite matrix

Rk Lftkel U() u TL.(.) dT (6)' i° Tk tk 1 + uT(.0 u(Or

with all its eigenvalues within the unit circle. Since [21-Rk] > 01 for some

-*-w.-v.-~-.*~*.~..V'4~ * *
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.4 constant 0 > 0,

1Vk T C7)AVk) 2 8 k Rk~k ~c0

Renews V(k) is a Lyapunov function and assures the boundedness of 10A If li01 is

bounded. Further, since (AV(W)} is a non-negative sequence with E AV(k) < - it
k-O

follows that AV(k) o 0 s k . a or alternately froa (7) *k_ - 0 as k .This

can also be expressed as

U T T) UT dT .0 as k (8)+T
lkJtk 1 + ru)k

Cae (1: If u is uniformly bounded In eI it follows from (1) that ais also
M 2

uniformly bounded. Since E AV(k) is bounded we have from (8) that a1 e L2 . Further. k=O
if u Is also bounded, then hlm e 1 (t) - 0. Hence for a uniformly bounded u with

a uniformly bounded derivative, a1 tends to zero and Ak *' 0 as k. -.

Case (it): If In addition to being uniformly bounded u is "sufficiently rich" [91

over an Interval Tan, so that the matrix Ri Is positive definite for all k C N,

then AV(k) < 0. Hence the parmter error vector tends to zero as k -. -.

Case (III): A more Interesting case azises when u my grow at most exponentially

and is relevant to the control problem (see comments at the end of this section).

Since condition (8) Is independent of the assumption of the boundedness of u, it

follows that aj 1 L 2 . If the Input satisfies the coaditionfluU S 1 M, n+ M2

for soma constants N1 end M2 , and hence grows at most exponentially,

A1 + Jtut

has a bounded derivative and the integrand in (8) tends to zero as k a. Hence

"ku(t) - el(t) o[supu()§] (9)
tar

or a, grows slowly (1] compared to the norm of the input vector u. Equation (9)

.t
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plays a central role in the proof of stability of the hybrid adaptive control

problem and is discussed in section 3a .

Approach 2; In this approach the error equation (1) is modified to the equivalent

form

Tk al (t)u(t) " e 1 2 (t )  t C [tk tkl) (10)

kc

*. by multiplying the two sides by e(t). Integrating over the interval [tktk+l)

yields:

T k le TUTd - tkle12('r)dT
k jtk 1 ftw k

or equivalently the discrete error model

W(k) - e(k) (11)

|--' where
tkl

w tkl, T'd A6(k) and l 2 A:(k).

ftk 1 t k l 1Td

For the error model (11) the adaptive law for updating c c be written by

Inspection [31 as

Ak -C(.) ) (12)
k 1 + w(k)-W(k)

rom yell known results in discrete adaptive control [3,41 it also follows that

- (i) 1 "k is bo, ded if k -0I 1 is bounded

(i1) 6 k ,0as k

and (iII) IC(k)I o[,supt(v)l ] or ,(k) grows more slowly than w(k).

Case (i): As in approach 1, If u Is uniformly bounded In and hence and
+

and w(k) are miformly bounded for all t c A and k e N respectively. If ul is

also bounded lin e1Ct) - 0.

. . .. . . i ' .?',-, _. .- - '. - . , * ..* -. ". - , " -. - . ." . . _ -
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Case (il: If in addition to being uniformly bounded u is sufficiently rich over

an interval T i j 1U(T)UT(T)dT - Pk is positive definite fofr all ] , N. If

1 T______V(k) - k *k' the adaptive law (12) results in AV(k) - k k < 0 for all
+ Pk kk

* * 0 and k e N. Hence* 0 as k e -.
k k

Case (IiI): As in approach 1, the case of greatest interest arises when u e
a

u L and grows at most exponentially. The condition Ic(k)t - o[supiw(v)I] can
k~V

be equivalently represented as

t
t ( O)rd s u Ut e 1 (T)u(T)dT (] (13)

Equation (13) implies that a sequence {O(k)} exists with 8(k) > 0 V k e N and

O(k) * 0 as k * , such that

t

J lel(T)l[ll(T)I - O(k)1 u(-)U JdT - 0 V k e N (14)

tk

Since e () - kkTu(T), 'r C [tkttk+) and *k is bounded (14) can also be written as

J e1CQ) I |u(T)4[V(k,T) - 8(k) ]dr - 0 V k eNS (15)
tk

wher(T) k(r) - cos w() and)Jd eN(5

• where V(k.,T A- I cooWk (T)l and ik(T) is the angle between the vectors k and

d
uk(T) for T C [tk, t kl). Since O(k) - 0 as k -, j v(k,t) is bounded and

v(k,T) >, 0 for T c [tk t6.1) it follows that v(k,T) - 0 as k which in turn

implies that

Te1 (t) " u(t) - osupI u('T)R]

which is the sam as (9) derived using approach 1.

b) Error Model 2:

The second error model is described by the error differential equation

a - As + b* u (16)



where e(t), b e Rn , A e and is stable, (A,b) is controllable, *(t), u(t) C

and +(t) - k' t C [tk, tk+1), k e N where *k is a constant vector. In this case

the parameter error vector is to be adjusted using the input u and the state error

vector e. Since A is a stable matrix, a symmetric positive definite matrix

P = PT > 0 exists such that AP + PA -Q < 0.

Approach 1: Using this approach error model (16) is first modified, as in the

continuous case [11, using a feedback term -YU ub Fe to the form

G;-As + b[J -u T ub TPe] (17)

The corresponding adaptive law is the average gradient obtained in the continuous

case over one period and is given by

1 rtk l* T- Jtk u(T)bTPe(T)dT (18)

Defining the Lyapunov function candidate as

1k G T (tk)PG(tk) + Tk .9
.max k

AV(k) a T (TrQ*(r~dr - [e()pb u ()u() dT., Sa Jt k  T d J t,

t 2
+ k+1-- aI(T)bu)dr (20)

2 J tk t t

Since for any vector x(t) c/tJ R1 (1) 2/ ', . (lIT 1 z(r2t )II ]
tT t-T

the second term on the riSht-hand-side of equation (20) dominates the third term
T

for all Y m . nene
2Tm~

T
AV(1 .$ 0 VkCN and Y);- " (21)

2Ti n

This p.lies thatli#k4 and 11.%(tk) are bounded if and fne(t 0 ) are bounded and

-V(k) , 0 as k i.e.

k+1 TFz rtk~ L z T.
S()Qe('r)d * 0 ; 0 i t )Pb3T .(T) d 0 as k (22)

tk k
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T 2
Again, since Z AV(k) is bounded e,[e Pb]u e L

k-O

Case (i): If u is uniformly bounded, it follows from equation (17) that e is also
L2

uniformly bounded. Since e e L this results in lim e(t) - 0.

Case (ii): As in the earlier cases with error model 1, when u(') is sufficiently

rich over a period Tain , V(k) is monotonically decreasing and hence *k ' 0 as k * -.

Case (iii): A somewhat more involved argument is needed when u C L ,u i L and
e
T

grows at most exponentially to relate the growth rates of u and 0 u. The exist-
k

ence of the discrete Lyapunov function assures the boundedness of e(t) at the

discrete instants t - tk. Since e can grow at most exponentially by equation (17)

and since the interval [tkrl) is uniformly bounded, e(t) is bounded for all t e R

Now, the sam arguments as those used in the continuous case [1] can be used

to demonstrate thatW (s)*#U o [supju(r)o I where W M(s) [s-A'. In

equation (17) [T u - yu TubTPe] is the input to an exponentially stable system.

Since eTPbu C L2 the component of e resulting from eTPbuTu must grow at a

slower rate thanu% i.e. o[supftu(T)R]. If this is unbounded, then the response
TT

due to T u should also be o[suptu(T)%],since we have already demonstrated that
t ,T

* e(t) is uniformly bounded for t e R

Approach 2: In this case the error model is described by

T
e. Ae + b#k u t e [tktk+I)  (23)

and does not contain the feedback term as in (17). Multiplying both sides of (23)

by eTP and equating the integrals over an interval [tktk+)
tsk~

*l eT t~~t l ftk~lT "t~l T

e (tPeWt) + / • (T)Qe()d - 2 ( eT(r)Pbu (r) k dr (24)
-tk tk Jtk

or

T
V *k w(k) (k) (25)

where l.h.s. of (24) is ck) and 2 e(T)PbU(T)d w(k).Once again the adaptive
J tk

law may be written by inspection as
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Tk - C{k)w(k) (26)
1 + w (k)w(k)

and yields Ic(k)i - o[suplw(v)oj (27)
k>v

Case (i): If u is uniformly bounded, from equation (23) we have e(t) and e(t)

uniformly bounded. Hence w(k) is uniformly bounded and e(k) - 0 as k -. Since

tI k+l 1 t k+ l

E(k) - e(t)Pe(t) { + { e(r)Qe(r)dr (28)

T tk tk

this implies that lim e (t)Pe(t) tk~ - 0 and the integral in (28) tends to zero
k- tk

as k . . Since e(t) is uniformly bounded lir e(t) - 0.

"K t-T
Case (ii): If u is sufficiently rich over any interval of length Tron , *kU(t) - 0

implies O 0 as k .
k

Case (iii): For the case where u grows at most exponentially we prove that

T T A
u(t) - o[sup U(T) ] by contradiction. Defining e Pb - e1 (see error model 3)kt)T

(27) may be written as:

I • l +l rtk4.l T

tk-e Pe(t)t k  + jk e (Te(r))dT(2
t .t l

J tk

T
where 8(k) a 0, k e N and 8(k) - 0 as k -. Let * (t)u(t) # o[suplu(i[t I Then

we can denotef u(t)Ii O(supIT(T)u(r)l]. In such a case, from (23)4 e(t)I and
tl'T

u(t) grow at the same rate and equation (29) can be modified to

ST e(tk)Pe(t rtk+l T
e k) + e t (r)Qe(r)dTr

Jt 1
tk7.-.1 l(k) (t le 2 )dk (30)

where 81(k) 0 as k * From (30) it follows that the sequence3:: /k+l T

(e T (t k~l)Pe(t k~l -eT(tk)Pe(tk} .0 ask -)--and ik • (T)Qe(T)dT 0 ask

Since je(t) can grow at most exponentially the latter implies that e(t) .0 as

C.0
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t * which contradicts the assumption that||e(t)I and qu(t)I1 grow without bound.

Error Model 3:

The third hybrid error model is merely a special case of the second error

model but is important in view of its practical applications - e.g. adaptive

control of a plant with relative degree 1. It is described by the scalar differ-

ential equation

e(t) -- e (t) + [*Tu(t) - ye t)uTt)u(t)]

if approach 1 is used and by the equation

T
el(t) - -4 e(t) + ku(t) (31)

if approach (2) is used. The corresponding adaptive laws can be specialized from

(18) and (26) as:

t1k 1

AOk= - Tel(T) u(T) dr (approach 1)-,max j tk  (32)
k

and AO F-(k)w(k) (approach 2)
k T-- 1 + w (k)w(k)

where 2 t +12

E(k) e e1 2et + a I. 1(r) dr (33):? ::r t ' t  J t k
rtk+l k kt~

and w(k) 2 e1 (T) U(T) dT (34)
1 Jtk

In both cases it can be shown that

(W ()4 u(t) -o~sup RIlu((35)I-

whereW - 1
M

Comments:

(i) The detailed analysis presented in this section is based on the conviction

of the authors that efficient design methods for adaptive systems can arise

only from a deeper understanding of the behavior of corresponding error
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models. For each model considered three specific cases have been discussed.

The first two assumne that the input u to the error model is uniformly

bounded. The results are particularly relevant to the identification

problem where the plant to be identified is assumed to be stable and

tha input to the plant is uniformly bounded. When the hybrid adaptive

algorithms described in this section are used to identify such a plant,

the output errors will tend to zero and the parameters will tend to the

true values if the input is sufficiently rich. The error model used and

the specific algorithm chosen depend upon the parametrization of the plant

and tha. sampling period T.

(lii) The main result of this section is relevant to the control problem as

well as identification problem where the vector u cannot be guaranteed

to be uniformly bounded a priori (e.5. the parallel model). When any
T T

one of the adaptive laws is used In such cases *k u (and VW#~)* u in

error models 2 and 3) is shown to grow asymptotically at a rate slower

than that at which supQ U(T)k grows. As shown in the next section this
t 'r

-' is central to the proof of global stability of the hybrid adaptive control

problem.

(iii) The two approaches used to develop the adaptive algorithmn in the three

error models are conceptually different. In the first approach, the

discrete Lyapunov function is a quadratic form In the parameter error

vector (model 1) or both parameter and output vectors (model. 2 and 3).
2

The direction in which A# is adjusted is the average gradient of al Wt
U1
with respect to f over an Interval Ct~~l.In contrast to this the

2
second approach attempts to minimize the integral of a1 Wt over an

Interval so that A# is the gradient of this performance index. As seen

from the simulation results in section 4, the two adaptive algorithms

lead to quite different responses of the overall system. Approach 1

is found to be more effective for smaller values of T k while approach 2
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is significantly better when Tk is large. Using the same Lyapunov

function it can be shown that a convex combination of the two adaptive

laws also assures the boundedness of the parameter errors. Hence such

a combination of the two may be used in practice to realize their

combined advantages.

(iv) As in purely discrete and continuous systems the adaptive laws in hybrid

systems are also chosen to assure that the parameter vector f varies

slowly as k . -. In the first error model this is accomplished using

a factor 1 T in the adaptive law (4) in the first approach and the
1factor u using the second (12). The feedback

-- ctr1 + wT w(k)

term in (17) serves the same purpose in error models 2 and 3 when the

first approach is used and is omitted in the second approach where a

quadratic factor I is used (26).
1 + wT (k)v(k)

3. Avolication. Extension and Refinement:

The concepts and techniques developed in section 2 find wide application in

adaptive systems where practical considerations demand a hybrid approach. The

most obvious of such applications is the design of stable hybrid adaptive con-

trollers and is considered in section 3a. The same concepts can also be extended

to discrete systems where data is collected at a faster rate than that at which

the parameters are adjusted. This is briefly outlined in 3b. For the sake of

completeness it is also shown in section 3c that algorithms of an integral

type [5] suggested for continuous systems can be considered as natural generali-

zations of the algorithms developed for hybrid and discrete systems. Finally,

wall known methods for adjusting the adaptive gain matrix in a time-varying fashion

e.g. recursive least-squares, to improve the speed of response can be readily

extended to the above cases and are discussed in 3c.
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* a) Stable Hybrid Adaptive Control:

A hybrid adaptive control system is one in which a plant with unknown paramters

which operates in continuous time is controlled by adjusting a controller parameter

vector only at discrete instants. In [10] the adaptive law (4) was used to demon-

strate the global stability of the overall system. Similar arguments can be used

to show that all the other adaptive algorithms in section 2, when properly applied

also result n global stability. For single-input single-output systems the

adaptive algorithms generated using the first and thi-!d error models are suitable;

the second error model has applications in multivariable control. In this section

we merely outline the principal steps involved in the proof of global stability.

A linear time-invariant plant with unknown parameters is to be controlled

adaptively. The input and output of the plant are u(-) and ypC-) respectively

and the plant transfer function W (a) is rational with known order and relative? p
degree and all zeros in the left half plane. A reference model has a stable

rational transfer function W (s) and has the same relative degree as the plant.

The input r(') of the model is piecewise continuous and uniformly bounded. The

output of the model is ya(') and the aim of adaptive control is to generate an

input u(-) to the plant using a differentiator free controller so that

l el(t)I - lin IyP(t) - YU(t)j " 0.

The solution to this problem for both the continuous [1,2] and discrete cases

(3,4] is well known. In the former using the input u(.) and output yp(.) the

controller generates a vector of sensitivity functions w(-) so that the input u(.)

to the plant can be expressed as

T (t)v(t)." uCt) V t > t o  (36)

+ 2*~l*where in general 0, w: t * .2 t . It is known that a constant vector 0 exists

such that when 8(t) 0 the transfer function of the plant together with the

2.............................
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controllir is W (a) and li e (t) 0 0. The aim of the adaptation procedure isHt_ -

to adjust 0(t) (and hence e(t)) continuously so that this asymptotic behavior is

realized.

In the hybrid adaptive control problm, the controller structure is identical

to that used in the continuous case but the parameter vector e(t) is adjusted

only at discrete instants so that

e(t) - 8 k t [t k t 1 ) (37)

2n44
where ak C R and is a constant vector. If e(t) - 8 - *(t) the parameter error

vector *(t) is also piecewise constant and #(t) = for t e [tk,tkl) where

a k 0 The error equation for the control problem can be written as

T 1 t (38)
o ". ~W(s)4 et)V(t) =el(t)(8) o

Special cases exist for the control problem, as for *,Asple when V (a) is a strictly
M

positive real transfer function. We consider below, only the general case when

W (a) has a relative degree n > 2.

*j To generate an adaptive lw for adjusting 0(t), an auxiliary signal ya(-)

is added to ae(.) where

T T
,Ya(t) - [ (t)Wx( ) - W(s) We(t)]V(t) (39)

UT

so that *T(t)(t) (t) + ya (t) A (t )  (40)

where c (t) s referred to as the augsented error. Using the observed values of

:,(,) and c;() the control parsmeter vector 0() (and hence #(,)) is adjusted and

it is then shown that this results in a bounded plant output.

In section 2, the principal result of the analysis was that the adaptive laws

(4) and (12) when applied to equation (40) assure that

0° .. ,
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T1t (t)C(t) -o(supJC(@)ItI (41)
t>,T

Further, since C(t) - wU(s)Iw(t) and 4*(t) - 0 as t ' it can be shown [101

that

T (t) V(t) - #*T (t)C(t) + O[sup lW(T)4]

t>.T
(42)

= o[sup J v()ll]
t JT

From equation (38) it follows that the output error a and hence the plant output

yp(.) can grow at most at a rate slower than supUW(T)J which in turn assures their

boundedesse.

b) Extension to Sstems with Two Tm Scales:

The hybrid error models described in section 2 can be considered as systeams

which operate on two time scales - a time scale associated with the continuous

time functions and a second with the discrete parameters. Such situations also

arias frequently in purely discrete systems where the nputs end outputs are

observed at a certain rate but the control parameters are adjusted at a slower

rate. The concepts established in section 2 are shown in this section to carry

over directly to such systems also. Further, it is interesting to note that

algorithms recently suggested for adjusting control parameters in continuous

time systems [5] can be interpreted as the continuous counterparts of such dis-

crete time systems operating on two time scales. Hence the methods suggested in

section 2 can be considered to provide a unified approach to two time scale prob-

lae in discrete, continuous and hybrid system.

(A) Discrete Time Models:

"'a first error model corresponding to error model (1) can be described by

the equation
UJ T

u e k, Z c N, t c [kT,(kOl)T] (43)
#k '
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where k is a constant vector in the interval [kT,(k+l)T] .Using approach 1 it can
k

be shown that if the adaptive law
(k+il) T-1

-=E I uLu
(bl) k 1R T k (44)

Is used, V(k) n.1 #T#i a Lyapunov function. This, in turn, implies ~ i2 k is
bounded fS 4 0 is bounded and

.V(k) V(k+l) - V(k) - - 1 - nkl k . 0 (45)

which yields

Il. 1i 0 i C N (46)

/I + -u-I /l~I I

Equation (46) assures global stability of the adaptive control problem when the

adaptive law (44) Is used to adjust the control paramters In a discrete adaptive

system.

Using the second approach, new variables c(k) and ;(k) are defined as

(k(l) T-12 (k+)T-1, e 2 elk) ; - *u. (k) (47)
t=kT 1ekT 2 £

and the error modeal (43) cm be epressd as

# ) () (48)

k)

The corresponding adaptive lr Is given by

(49)
1 + C (k) C(k)

and assures that Its a. - 0 .

The other adaptive laws for the discrete error models corresponding to hybrid error

models 2 md 3 I section 2 cm be derived in a similar fashion.

I .'.-..................................
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(ii) Continuous Time Models,:

In the continuous time error nodel

,, *(t)u(t) - el(t) t C 1+  (50)

it Is vell known that the adaptive law

.- a 1 Mt u(t)" (51)
i + u (t)u(t)

results In a bounded parameter error vector. Recently other continuous adaptive

laws have been suggested [51 which utilize past input-output data in adjusting

adpt .v paramters. We shall refer to such adaptive algorithms as Integral

algoritbma In contrast to the point algorithm (51). By a proper dfinition of

the error model such algorithms can be shown to be generalizations of the hybrid

and discrete algorithms developed In sections 2 and 3b.

Let the unknown parameter error vector at time t be #(t) and let the output

el .,. xl R be defind by

* (t)u(r) = (t,T) T < t T, t l. (52)

The adaptive law

%, It u(Ir) l(t,T );(). .1 ( (, (53)
T T

t -T 1 + u (r)u(T)

which uses input-output data over the interval [t-T,t) is a generalization of (44)

for the discrete case. lowever, unlike the discrete algorithm, (53) poses two

major difficulties in Implementation. The first Involves the storage of the values

of the function u(-) over the Interval of Integration. The second and significantly

greater problem Is caused by the fact that e1(t,T) cannot be measured directly for

use In the adaptive lsw and cannot be computed from equation (53) since 4(t) is

Unknown.

p l. € ..
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The above problem can be circumvented by noting that error models of the type

(52) arise in adaptive situations (as described in section 3a) where a parameter

vector 8(t) Is adjusted and has to evolve to a desired but unknown constant vectorf: * *

* 0i.e. (t) 8(t) -8

Bence the error model (52) becomes

[E(t) -e*]Tu(T) -e(t.r) (54)

or e (t)u(r) - ym(T) - e1 (tT) (55)

where Ym(?) is the signal produced .by the model and can be measured. Hence in such

cases the adaptive law can be implemented as

.(t) iOt) Td (56)

t-T d

As mentioned earlier, the implementation of (56) is rendered difficult by the

fact that the values of u(') have to be stored over a window of length T. To over-

come this problem the length of the Interval T is Increased to t so that the entire

past data is used but a weighting factor a(-) is Included to assure the conver-

gence of the integral. Such an exponentially weighted adaptive algorithm has the

form

t (t-T)u()uT(T)O(t) - u(T)y (T)
q(t) - ((t) - / 1+) , dr (57)

which can be conveniently realized by the matrix differential equations

0(t) - -R(t)e Ct) - r(t) Ot o ) 0 0

1() -" ) U (tu(t) 1(t O) o (58)
(t) - )0

i(t) " -qr(t) + T(t 0 0

1+ u l)u('r) 0
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The adaptive law (58) is precisely the one suggested in (5].

In conclusion, the approach developed in section 2 is seen to unify discrete,

continuous and hybrid adaptive algorithms with two time scales.

c) Adaptive Gain:

In the discussions in the preceding sections, adaptive gains were not included

in the adaptive laws to focus attention on the principal results. Experience with

complex adaptive systems has however shown that the speed of convergence of the

algorithm depends critically on the choice of the adaptive gains. In particular a

time-varying gain matrix obtained from least-squares considerations is found to be

generally acceptable for most applications. In this section it is briefly shown

that similar time-varying gain matrices can also be included in the hybrid adaptive

laws. The details are included only for the first error model. Similar arguments

carry over to the other error models also.

If the first error model is described by

k Tu(t) - e (t) t C (tk ()59)

let T

Rk T k tk + u T ('r)u()

The adaptive gain matrix r k is defined by

r,+ - r k + r0  1 (60)

md the adaptive law is given by

r A*k " - U + dT (61)

tk 1 . + u (r)u(r)

For the system described by equations (59), (60) and (61) it cm be shown that

1 T r-1 (2V(k) - 2 k r (62)
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is a Lyspunov function resulting in

_ tk 1 + (du (r)

2?• - 2 td t (rur xLk 1+Uk~T -rkak]rk

rltl ;1:(T):U( , dr (63)t- Lk 1 + U (T)u(T)

S 0 if I - rk 0 V k e N

From 63) it folljws thatl kI is bounded if 1% is bounded, *k 0 0 as k

and j T- dT * 0 as k m If u(') grows at most exponentially,
Jtk 1 + U (T)u(T)

*"the last result Implies that a Ct) - o[supRu(W ].
tjIT

4. Simulations:

The error models described in section 2 end their applications described in

section 3 have been simulated extensively on the digital computer. We include in

this section four typical examples which compare the effectiveness of the two

adaptive approaches proposed In section 2. In all cases the parmeters are ad-

Justed periodically with a period T, so that tk a kT (k e H). The main interest

In these simulations is on the effect of T on the speed and accuracy of the

responses.

S1 Jl 1: The first hybrid error model, described by the equation (1) was simu-

lated when uCt),#(t) c 1 and the Input vector u is defined by

ulCt) * sinC.75t) u2Ct) - sin(2.6t)

Figures la-ld show the evolution of the output error e1 (t) and the parameter error

vector 4(t) when approaches 1 and 2 are used. In Figures la and lb T - 0.5 while

T - 5.0 In Figures lc and ld. Approach I results in rapid convergence of e (t) and

#(t) for T - 0.5. In contrast to this the convergence is T slow when approach 2

to used. This my be attributed to the fact that w(k) a J el()u(T)dt does not

9• k

.4'.'4 " ' '" """ ". . " ' "" " " " . . .'" " " . .
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vary adequatoy aver an interval when the period T is small. As T is increased

the response using the first approach deteriorates while that using the second

approach improves markedly. With T - 5 it is seen that f decreases to a value

dose to zero at the end of one period.

"".L2 2: Figures 2a-2d show the evolution of e1 (t) and f(t) when the same

experiments as in example 1 were performed on error model 3. The basic features

of the responses using the two approaches remain the ame indicating that the

approach rather than the specific error model chosen governs the behavior of the

transient response.

jLumi 3: In this example, all the signals of nterest are discrete, though

Input and output are defined for all k e N and the parameter error vector is

adjusted periodically with period T e N. In the second order system simulated

u1 (k) - sin(.osk) u2 (k) - sin(.25k)

The adaptive lw used in this case to adjust A had the form

A#(k) - A# I (k) + (.-8)A# 2 k) 0 $ 6 $ 1

where #1 (k) and A#2C(k) are the adaptive lws given by the two approaches. As

might be expected a to I for small values of Tend a 9A 0 for large values of T

are fotud to be satisfactory as seen in Figure 3a-3d.

I JL: The behavior of the error model when the input grows at most exponentially

has been stressed throughout the paper. In particular the *&in result of section 2

was that is such a case the output error would grow at most at a slower rate as

capared to the Input. The experiments In this example wore performed to verify

this tmOlt. If u(t) has the form

U(t) - e'4 tsin(.75 t)

u2(t) - e' 4 tsin(2.6t)

' s , *.". : , .......................... ,........................'-....".....".........,.........-...-_...-......."-...,............-..."........"..........-...-'.-
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it is seen from Figure 4a-4b *k0 as k so that (t) 0 as t-*-. In
k 1

this case u grows in an unbounded fashion but is sufficiently rich. However,

"" when only the first component ul(t) of u(t) grows exponentially, k does not

tend to zero but asymptotically approaches a constant value orthogonal to the

vector [1,0]. This can be seen in Figure 4c-4d.
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